4.8 Article

De novo domestication of wild tomato using genome editing

Journal

NATURE BIOTECHNOLOGY
Volume 36, Issue 12, Pages 1211-+

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nbt.4272

Keywords

-

Funding

  1. Agency for the Support and Evaluation of Graduate Education (CAPES, Brazil)
  2. National Council for Scientific and Technological Development (CNPq, Brazil)
  3. Foundation for Research Assistance of the Sao Paulo State (FAPESP, Brazil)
  4. German Federal Ministry of Education and Research (BMBF, Germany)
  5. CAPES
  6. FAPESP [2013/12209-1, 2013/18056-2]
  7. BMBF [2015/50220-2, 031B0334]
  8. CNPq [307040/2014-3]

Ask authors/readers for more resources

Breeding of crops over millennia for yield and productivity ) has led to reduced genetic diversity. As a result, beneficial traits of wild species, such as disease resistance and stress tolerance, have been lost 2. We devised a CRISPR-Cas9 genome engineering strategy to combine agronomically desirable traits with useful traits present in wild lines. We report that editing of six loci that are important for yield and productivity in present-day tomato crop lines enabled de novo domestication of wild Solanum pimpinellifolium. Engineered S. pimpinellifolium morphology was altered, together with the size, number and nutritional value of the fruits. Compared with the wild parent, our engineered lines have a threefold increase in fruit size and a tenfold increase in fruit number. Notably, fruit lycopene accumulation is improved by 500% compared with the widely cultivated S. lycopersicum. Our results pave the way for molecular breeding programs to exploit the genetic diversity present in wild plants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available