4.6 Review

The use of Drosophila melanogaster as a model organism to study immune-nanotoxicity

Journal

NANOTOXICOLOGY
Volume 13, Issue 4, Pages 429-446

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/17435390.2018.1546413

Keywords

Nanomaterials; innate immunity; drosophila melanogaster; toll pathway; reactive oxygen species

Funding

  1. National Environmental Agency (NEA), Singapore [R-706-000-043-490]

Ask authors/readers for more resources

Nanomaterials (NMs) are widely used in consumer and industrial products, as well as in the field of nanomedicine. Despite their wide array of applications, NMs are regarded as foreign entities by the body and thus induce various immune reactions. In mammals, NMs trigger differential recognition by immune cells such as macrophages, causing perturbation of the immune system. Studies on the pattern recognition of NMs have revealed that the Toll-like receptor signaling pathway plays an essential role in NM-induced innate immunity. However, effects caused by physicochemical properties of NMs on immune response and how NMs are recognized by immune cells are not fully understood. Furthermore, the complexity of the mammalian immune system and interspecies variation are still being debated, and the discordant results warrant the need to address these issues. Drosophila melanogaster has gained popularity as a model to study nanotoxicity. Drosophila innate immunity has extensively been studied, providing insights into our understanding of key signaling cascades involved, and importantly it has conserved immune-related genes and mechanogenetic pathways that represents a useful basis for studying its biological response at molecular level to environmental contaminants such as NMs. Moreover, various genetic tools and reagents enable to elucidate the molecular mechanisms underlying the internalization of NMs by immune cells. Furthermore, numerous forward and reverse genetic approaches can be employed to dissect complex biological processes, such as identifying signal transduction pathways and their core components involved in NM-induced immune responses. This review presents an overview of Drosophila innate immunity, as well as summarizes the impact of NM exposure on immune response in Drosophila. We also highlight the recent advancement of suitable methodologies and tools regarding the use of Drosophila as a model for studying the immune-related toxicity of NMs, taking into account the limitations associated with studying NM-induced toxicity in the mammalian system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available