4.3 Article

Perovskite Nanoparticles Toxicity Study on Airway Epithelial Cells

Journal

NANOSCALE RESEARCH LETTERS
Volume 14, Issue -, Pages -

Publisher

SPRINGEROPEN
DOI: 10.1186/s11671-018-2845-2

Keywords

Nanoparticles; Perovskite; Ca2+ signal; ROS; Apoptosis

Funding

  1. Linkou Chang Gung Memorial Hospital [CMRPG3F0601, CMRPD2F001, CMRPG3D0082]

Ask authors/readers for more resources

Research on the toxicity of nanoparticles has developed over recent years due to their increasing prevalence in common everyday materials. Various nanoparticles have been reported to promote and induce mucus secretion, which could potentially lead to airway damages and respiratory complications. Lanthanum strontium manganite (LSM) is a nanoparticle widely used in solar oxidized fuel cells (SOFCs) due to its high electrical conductivity, high electrochemical activity for O-2 reduction reaction, high thermal stability and compatibility of SOFC electrolytes, and most importantly, its microstructural stability and long-term performance. Very few studies have been conducted on LMS's toxicity, thus its effect on airway cells was investigated in this study. After treating trachea cells with increasing concentrations of LSM ranging up to 500g/ml, we found that it has a moderate effect on cell viability, ROS production, cytochrome C, and caspase 3 expression. Despite its minimal impact on stated apoptosis-inducing characteristics, LSM illustrated an inhibiting effect on mucus secretion. We obtained a decreasing trend in mucus secretion with an increased concentration of the LSM treatment. Overall, LSM's advancement in SOFCs necessitated a toxicity study, and although it does not show a significant toxicity to trachea cells, LSM reduces mucus secretion, and can potentially interfere with airway clearance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available