4.6 Article

Antagonizing the Androgen Receptor with a Biomimetic Acyltransferase

Journal

ACS CHEMICAL BIOLOGY
Volume 11, Issue 10, Pages 2797-2802

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acschembio.6b00659

Keywords

-

Funding

  1. National Institutes of Health [R01DK5R01DK054257]
  2. University of Delaware

Ask authors/readers for more resources

The Androgen Receptor (AR) remains the leading target of advanced prostate cancer therapies. Thiosalicylamide analogs have previously been shown to act in cells as acyltransfer catalysts that are capable of transferring cellular acetate, presumably from acetyl-CoA, to HIV NCp7. Here we explore if the cellular acetyl-transfer activity of thiosalicylamides can be redirected to other cellular targets guided by ligands for AR. We constructed conjugates of thiosalicylamides and the AR-binding small molecule tolfenamic acid, which binds the BF-3 site of AR, proximal to the coactivator FXXLF binding surface. The thiosalicylamide-tolfenamic acid conjugate, YZ03, but not the separate thiosalicylamide plus tolfenamic acid, significantly enhanced acetylation of endogenous AR in CWR22Rv1 cells. Further analysis confirms that Lys720, a residue critical to FXXLF coactivator peptide binding, is a site of acyl-YZ03 acetylation. Under acyl-transfer conditions, YZ03 significantly enhances the ability of BF-3 site binding ligands to inhibit AR-coactivator peptide association. These data suggest that biomimetic acyltransferases can enhance protein-protein interaction inhibitors through covalent modification of critical interfacial residues.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available