4.7 Article

An improved method for utilizing high-throughput amplicon sequencing to determine the diets of insectivorous animals

Journal

MOLECULAR ECOLOGY RESOURCES
Volume 19, Issue 1, Pages 176-190

Publisher

WILEY
DOI: 10.1111/1755-0998.12951

Keywords

AMPtk; arthropod mock community; bat guano; dietary analysis; insectivore; next-generation sequencing

Funding

  1. United States Forest Service, Northern Research Station
  2. University of Wisconsin-Madison, Wisconsin Agricultural Experiment Station
  3. National Science Foundation [IOS-1121739, IOS-1121807]

Ask authors/readers for more resources

DNA analysis of predator faeces using high-throughput amplicon sequencing (HTS) enhances our understanding of predator-prey interactions. However, conclusions drawn from this technique are constrained by biases that occur in multiple steps of the HTS workflow. To better characterize insectivorous animal diets, we used DNA from a diverse set of arthropods to assess PCR biases of commonly used and novel primer pairs for the mitochondrial gene, cytochrome oxidase C subunit 1 (COI). We compared diversity recovered from HTS of bat guano samples using a commonly used primer pair ZBJ to results using the novel primer pair ANML. To parameterize our bioinformatics pipeline, we created an arthropod mock community consisting of single-copy (cloned) COI sequences. To examine biases associated with both PCR and HTS, mock community members were combined in equimolar amounts both pre- and post-PCR. We validated our system using guano from bats fed known diets and using composite samples of morphologically identified insects collected in pitfall traps. In PCR tests, the ANML primer pair amplified 58 of 59 arthropod taxa (98%), whereas ZBJ amplified 24-40 of 59 taxa (41%-68%). Furthermore, in an HTS comparison of field-collected samples, the ANML primers detected nearly fourfold more arthropod taxa than the ZBJ primers. The additional arthropods detected include medically and economically relevant insect groups such as mosquitoes. Results revealed biases at both the PCR and sequencing levels, demonstrating the pitfalls associated with using HTS read numbers as proxies for abundance. The use of an arthropod mock community allowed for improved bioinformatics pipeline parameterization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available