4.4 Article

Multiscale study of influence of interfacial decohesion on piezoresistivity of graphene/polymer nanocomposites

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1361-651X/aafa58

Keywords

polymer graphene nanocomposites; imperfect interface; cohesive zone model; electromechanical coupling

Funding

  1. China Scholarship Council (CSC)

Ask authors/readers for more resources

A multiscale strategy is proposed to study the role of interfacial decohesion on the piezoresistive properties of a graphene/polymer nanocomposite. The piezoresistive effect is a change in the electrical resistivity when mechanical strain is applied. First, a cohesive zone model is identified by atomistic simulations. This cohesive zone model enriches imperfect interfaces, which model graphene sheet, at mesoscale in our continuum mechanical model. This nonlinear mechanical model is used to generate deformed representative volume element to study the influence of strain and interfacial decohesion on the conductivity of graphene/polymer nanocomposites. The effective conductivity is studied with an electric continuum model at mesoscale that incorporates the tunneling effect. A conductor-insulator transition is observed for elongations above 2% for graphene volume fraction just above the percolation threshold. The transition appears for an elongation of 8% instead of 2%, when the interfacial decohesion is neglected.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available