4.7 Article Proceedings Paper

Preliminary validation of a new way to model physical interactions between pulp, charge and mill structure in tumbling mills

Journal

MINERALS ENGINEERING
Volume 130, Issue -, Pages 76-84

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.mineng.2018.10.013

Keywords

Grinding; Modelling; Simulation; Validation

Funding

  1. project Comminution modelling and control, the Centre of Advanced Mining and Metallurgy at Luld University of Technology

Ask authors/readers for more resources

Modelling of wet grinding in tumbling mills is an interesting challenge. A key factor is that the pulp fluid and its simultaneous interactions with both the charge and the mill structure have to be handled in a computationally efficient way. In this work, the pulp fluid is modelled with a Lagrange based method based on the particle finite element method (PFEM) that gives the opportunity to model free surface flow. This method gives robustness and stability to the fluid model and is efficient as it gives possibility to use larger time steps. The PFEM solver can be coupled to other solvers as in this case both the finite element method (FEM) solver for the mill structure and the DEM solver for the ball charge. The combined PFEM-DEM-FEM model presented here can predict charge motion and responses from the mill structure, as well as the pulp liquid flow and pressure. All cases presented here are numerically modelled and validated against experimentally measured driving torque signatures from an instrumented small-scale batch ball mill equipped with a torque meter and charge movements captured from highspeed video. Numerical results are in good agreement with experimental torque measurements and the PFEM solver also improves on efficiency and robustness for solving charge movements in wet tumbling mill systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available