4.3 Article

Tri-core photonic crystal fiber based refractive index dual sensor for salinity and temperature detection

Journal

MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
Volume 61, Issue 3, Pages 847-852

Publisher

WILEY
DOI: 10.1002/mop.31612

Keywords

finite element method; photonic crystal fiber; sensitivity and coupling mechanism

Ask authors/readers for more resources

This article discusses the tri-core photonic crystal microstructure fiber for the process of simultaneous sensing for salinity and temperature of water substances. This kind of microstructure is preferred in many sensing application to scale the detection process in micrometer range. In this novel sensor, the sensitivity is calculated through coupling mechanism by tracking wavelength shift of various concentrations of salinity and temperature using finite element method. The sensible samples are in liquid and are infiltrated into the framed hollow cavity. Based on the coupling principle between silica substrate and the analyte material, the sense of the salt as well as temperature is obtained. Finally, it is noted that sensitivity of the salt level in water as 5404.9 nm/RIU for x polarization direction and 5674 nm/RIU for y polarization direction have been calculated with the temperature sensitivity of 4 nm/degrees C in the same water substances.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available