4.7 Article

Aminopropyl-functionalized mesoporous silica SBA-15 as drug carrier for cefazolin: adsorption profiles, release studies, and mineralization potential

Journal

MICROPOROUS AND MESOPOROUS MATERIALS
Volume 274, Issue -, Pages 113-126

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.micromeso.2018.07.046

Keywords

Drug-loaded mesoporous silica; Surface functionalization; Adsorption studies; Drug release profiles; Silica's mineralization potential

Funding

  1. Ministry of Science and Higher Education

Ask authors/readers for more resources

In this study, the effect of 3-aminopropyl surface functionalization of ordered mesoporous silica SBA-15 on cefazolin adsorption and release profiles was investigated. The mineralization potential of functionalized SBA-15 in simulated body fluid was also investigated. The 3-aminopropyl-functionalized SBA-15 (SBA-NH2) were obtained by post-synthesis treatment of the parent SBA-15. The loading of cefazolin on SBA-NH2 was performed by using adsorption process from water solutions. The adsorption efficiency was characterized by applying the Langmuir, Freundlich, and Dubinin-Radushkevich isotherm models. The adsorption kinetics were investigated using pseudo-first and pseudo-second order models as well as intraparticle diffusion model. It was found that the equilibrium data were best fitted by the Langmuir isotherm. Cefazolin adsorption followed the pseudo-second order kinetics. The cefazolin-loaded SBA-NH2 showed prolonged release profile for a period of 7 days. Cefazolin release was characterized by zero-order kinetics with reduced burst release. After 60 days of the mineralization studies the hydroxyapatite was formed on the cefazolin-loaded SBA-NH2 surface. This preliminary study supports the potential use of SBA-NH2 as a bifunctional drug carrier with prolonged cefazolin release and mineralization properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available