4.8 Article

Nickel Cobalt Hydroxide @Reduced Graphene Oxide Hybrid Nanolayers for High Performance Asymmetric Supercapacitors with Remarkable Cycling Stability

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 8, Issue 3, Pages 1992-2000

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.5b10280

Keywords

ultrathin; nanolayer; Ni-Co hydroxide; supercapacitor; cycling stability

Funding

  1. NSFC [51202213]
  2. CPSF [2013M530889, 2014T70230]
  3. EYSFHP [Y2012005]

Ask authors/readers for more resources

Nanolayered structures present significantly enhanced electrochemical performance by facilitating the surface -dependent electrochemical reaction processes for super capacitors, which, however, causes capacitance fade upon cycling due to their poor chemical stability. In this work, we report a simple and effective approach to develop a stable, high performance electrode material by integrating 2D transition metal hydroxide and reduced graphene oxide sheets at nanometer scale. Specifically, a hybrid nanolayer of Ni-Co hydroxide @reduced graphene oxide (Ni,Co OH/rGO) with an average thickness of 1.37 nm is synthesized through an easy one -pot hydrothermal method. Benefiting from the face to face contact model between Ni-Co hydroxide and rGO sheets, such unique structure presents superior specific capacitance and cycling performance as compared to the pure Ni-Co hydroxide nanolayers. An asymmetric supercapacitor based on Ni,Co-OH/rGO and three-dimensional (3D) hierarchical porous carbon is developed, exhibiting a high energy density of 56.1 Wh kg(-1) along with remarkable cycling stability (80% retention after 17 000 cycles), which holds great promise for practical applications in energy storage devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available