4.8 Article

Self-Healing Conductive Injectable Hydrogels with Antibacterial Activity as Cell Delivery Carrier for Cardiac Cell Therapy

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 8, Issue 27, Pages 17138-17150

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.6b04911

Keywords

self-healing; injectable hydrogels; cell therapy; myocardial infarction; conducting polymer

Funding

  1. National Natural Science Foundation of China [21304073]
  2. Xi'an Jiaotong University

Ask authors/readers for more resources

Cell therapy is a promising strategy to regenerate cardiac tissue for myocardial infarction. Injectable hydrogels with conductivity and self-healing ability are highly desirable as cell delivery vehicles for cardiac regeneration. Here, we developed self-healable conductive injectable hydro gels based on chitosan-graft-aniline tetramer (CS-AT) and dibenzaldehyde-terminated poly(ethylene glycol) (PEG-DA) as cell delivery vehicles for myocardial infarction. Self-healed electroactive hydrogels were obtained after mixing CS-AT and PEG-DA solutions at physiological conditions. Rapid self healing behavior was investigated by rheometer. Swelling behavior, morphology, mechanical strength, electrochemistry, conductivity, adhesiveness to host tissue and antibacterial property of the injectable hydrogels were fully studied. Conductivity of the hydrogels is similar to 10(-3) S.cm(-1), which is quite dose to native cardiac tissue. Proliferation of C2C12 myoblasts in the hydrogel showed its good biocompatibility. After injection, viability of C2C12 cells in the hydrogels showed no significant difference with that before injection. Two different cell types were successfully encapsulated in the hydrogels by self-healing effect. Cell delivery profile of C2C12 myoblasts and H9c2 cardiac cells showed a tunable release rate, and in vivo cell retention in the conductive hydrogels was also studied. Subcutaneous injection and in vivo degradation of the hydrogels demonstrated their injectability and biodegradability. Together, these self-healing conductive biodegradable injectable hydrogels are excellent candidates as cell delivery vehicle for cardiac repair.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available