4.8 Article

Design of In Situ Poled Ce3+-Doped Electrospun PVDF/Graphene Composite Nanofibers for Fabrication of Nanopressure Sensor and Ultrasensitive Acoustic Nanogenerator

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 8, Issue 7, Pages 4532-4540

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.5b11356

Keywords

Ce3+-doped PVDF/graphene nanofiber; piezoelectric generator; ultrasensitive; acoustic nanogenerator; mechanical energy harvester

Funding

  1. Science and Engineering Research Board, Government of India [SERB/1759/2014-15]
  2. UGC-BSR fellowship [P-1/RS/79/13]

Ask authors/readers for more resources

We report an efficient, low-cost in situ poled fabrication strategy to construct a large area, highly sensitive, flexible pressure sensor by electrospun Ce3+ doped PVDF/graphene composite nanofibers. The entire device fabrication process is scalable and enabling to large-area integration. It can able to detect imparting pressure as low as 2 Pa with high level of sensitivity. Furthermore, Ce3+-doped PVDF/graphene nanofiber based ultrasensitive pressure sensors can also be used as an effective nanogenerator as it generating an output voltage of 11 V with a current density similar to 6 nA/cm(2) upon repetitive application of mechanical stress that could lit up 10 blue light emitting diodes (LEDs) instantaneously. Furthermore, to use it in environmental random vibrations (such as wind flow, water fall, transportation of vehicles, etc.), nanogenerator is integrated with musical vibration that exhibits to power up three blue LEDs instantly that promises as an ultrasensitive acoustic nanogenerator (ANG). The superior sensing properties in conjunction with mechanical flexibility, integrability, and robustness of nanofibers real-time monitoring of sound waves as well as detection of different type of musical vibrations. Thus, ANG promises to use as an ultrasensitive pressure sensor, mechanical energy harvester, and effective power source for portable electronic and wearable devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available