4.8 Article

Morphological Evolution of High-Voltage Spinel LiNi0.5Mn1.5O4 Cathode Materials for Lithium-Ion Batteries: The Critical Effects of Surface Orientations and Particle Size

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 8, Issue 7, Pages 4661-4675

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.5b11389

Keywords

cathode material; LiNi0.5Mn1.5O4; lithium-ion batteries; microwave synthesis; morphology and surface orientation

Funding

  1. KaLiPat project - Federal Ministry of Education and Research (BMBF) [03EK3008]
  2. Federal Ministry of Economic and Technology (BMWi)
  3. Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) of Germany

Ask authors/readers for more resources

An evolution panorama of morphology and surface orientation of high-voltage spinel LiNi0.5Mn1.5O4 cathode materials synthesized by the combination of the microwave-assisted hydrothermal technique and a post-calcination process is presented. Nanoparticles, octahedral and truncated octahedral particles with different preferential growth of surface orientations are obtained. The structures of different materials are studied by X-ray diffraction (XRD), Raman spectroscopy, X-ray absorption near edge spectroscopy (XANES), and transmission electron microscopy (TEM). The influence of various morphologies (including surface orientations and particle size) on kinetic parameters, such as electronic conductivity and Li+ diffusion coefficients, are investigated as well. Moreover, electrochemical measurements indicate that the morphological differences result in divergent rate capabilities and cycling performances. They reveal that appropriate surface-tailoring can satisfy simultaneously the compatibility of power capability and long cycle life. The morphology design for optimizing Li+ transport and interfacial stability is very important for high-voltage spinel material. Overall, the crystal chemistry, kinetics and electrochemical performance of the present study on various morphologies of LiNi0.5Mn1.5O4 spinel materials have implications for understanding the complex impacts of electrode interface and electrolyte and rational design of rechargeable electrode materials for lithium-ion batteries. The outstanding performance of our truncated octahedral LiNi0.5Mn1.5O4 materials makes them promising as cathode materials to develop long-life, high energy and high power lithium-ion batteries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available