4.8 Article

Facile Fabrication of MoS2-Modified SnO2 Hybrid Nanocomposite for Ultrasensitive Humidity Sensing

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 8, Issue 22, Pages 14142-14149

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.6b02206

Keywords

molybdenum disulfide; hybrid nanocomposite; hydrothermal route; humidity sensing

Funding

  1. National Natural Science Foundation of China [51407200, 51405257]
  2. Science and Technology Plan Project of Shandong Province [2014GSF117035]
  3. Fundamental Research Funds for the Central Universities of China [15CX05041A]
  4. Science and Technology Project of Huangdao Zone, Qingdao, China [2014-1-51]

Ask authors/readers for more resources

An ultrasensitive humidity sensor based on molybdenum-disulfide- (MoS2)-modified tin oxide (SnO2) nanocomposite has been demonstrated in this work. The nanostructural, morphological, and compositional properties of an as-prepared MoS2/SnO2 nanocomposite were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive spectrometry (EDS), nitrogen sorption analysis, and Raman spectroscopy, which confirmed its successful preparation and rationality. The sensing characteristics of the MoS2/SnO2 hybrid film device against relative humidity (RH) were investigated at room temperature. The RH sensing results revealed an unprecedented response, ultrafast response/recovery behaviors, and outstanding repeatability. To our knowledge, the sensor response yielded in this work was tens of times higher than that of the existing humidity sensors. Moreover, the MoS2/SnO2 hybrid nanocomposite film sensor exhibited great enhancement in humidity sensing performances as compared to the pure MoS2, SnO2, and graphene counterparts. Furthermore, complex impedance spectroscopy and bode plots were employed to understand the underlying sensing mechanisms of the MoS2/SnO2 nanocomposite toward humidity. The synthesized MoS2/SnO2 hybrid composite was proved to be an excellent candidate for constructing ultrahigh-performance humidity sensor toward various applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available