4.7 Article

Mechanical behaviour of sintered silver nanoparticles reinforced by SiC microparticles

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2018.12.015

Keywords

Sintered silver nanoparticle; SiC microparticle; Nanoindentation; Mechanical property; Constitutive behaviour

Funding

  1. National Natural Science Foundation of China [51508464, 11772257, U1537104]
  2. Natural Science Foundation of Shaanxi Province [2017JM1013]
  3. Astronautics Supporting Technology Foundation of China [2019-HT-XG]
  4. Fundamental Research Funds for the Central Universities [3102018ZY015]
  5. Natural Science Foundation of Shanxi Province [201701D221008]
  6. Swedish Board for Strategic Research [GMT14-0045]

Ask authors/readers for more resources

SiC microparticles with various weight ratios (0.0, 0.5, 1.0 and 1.5 wt%) are incorporated into sintered silver nanoparticles (AgNP) as one of the promising packaging materials for high-power electronic devices. Mechanical properties and constitutive behaviour of sintered AgNP reinforced by SiC microparticles are investigated based on nanoindentation experiment and analytical approach. Nanoindentations were performed in the manner of continuous stiffness measurement for a maximum penetration depth of 2000 nm at a strain rate of 0.05 s(-1). Particularly, a Berkovich indenter is utilized to evaluate the values of Young's modulus and hardness, and a spherical indenter is utilized to describe the constitutive behaviour. For sintered AgNP with 0.5 wt% SiC, the morphology exhibits uniformly compact microstructures to enable optimizing the heat conductivity, the yield strength and hardening capacity of sintered AgNP material is enhanced. To describe the constitutive behaviour, an analytical approach is proposed to simulate the indentation behaviour. The parameters in the modified power-law model are determined by fitting the average indentation responses. The developed correlation between microstructure and macroscopic properties facilitates the design of AgNP paste morphology and improves the mechanical properties of sintered AgNP in electronics packaging.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available