4.7 Article

Effect of SiC nanoparticles on manufacturing process, microstructure and hardness of Mg-SiC nanocomposites produced by mechanical milling and hot extrusion

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2018.09.106

Keywords

Mg-SiC nanocomposite; Mechanical milling; Cold isostatic pressing; Hot extrusion; Vickers hardness

Funding

  1. Deutsche Forschungsgemeinschaft (DFG) [KA 4325/1-1]

Ask authors/readers for more resources

The production of fully dense Mg-SiC nanocomposites with a homogeneous distribution of SiC nanoparticles through powder metallurgy techniques is still a challenging issue. We propose to combine sintering and hot extrusion of mechanically milled composite powders to encompass the known difficulties of conventional processing. Here, we report on the effect of SiC nanoparticle content on the compressibility, microstructure and hardness of SiC-Mg nanocomposites during the different consolidation steps. Cold-isostatic pressing, sintering and indirect hot extrusion were used for compaction and consolidation. Near dense Mg-SiC nanocomposites with 1 and 10 vol% SiC nanoparticles were successfully produced with a homogeneous distribution of the nanoparticles. Scanning electron microscopy, X-ray diffraction and transmission electron microscopy were used to characterise the microstructure of the powders and of the sintered and extruded Mg-SiC nanocomposites. Vickers microhardness tests were done to reveal the hardening effect after sintering and extrusion. The nanoparticles pin the grain boundaries and foster dynamic recrystallisation, so that a nanograined Mg matrix develops and is preserved even after the final consolidation step. The results further show a very good interface adherence between nanoparticles and matrix contributing to the high hardness of the nanocomposites.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available