4.5 Article

Experimental investigation on wire electric discharge machining (WEDM) of Nimonic C-263 superalloy

Journal

MATERIALS AND MANUFACTURING PROCESSES
Volume 34, Issue 1, Pages 83-92

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/10426914.2018.1532589

Keywords

Nimonic C-263; WEDM; CR; SR; XRD; SEM; EDS

Ask authors/readers for more resources

Nimonic C-263 superalloy offers a wide range of outstanding properties, namely, high-temperature resistance, high specific strength, high thermal fatigue, and hot corrosion resistance. The concern of the present study is mainly focused on the effect of wire electrical discharge machining (WEDM) process parameters namely, spark energy, spark frequency, and peak current on surface roughness, average cutting rate, and surface integrity aspects of Nimonic C-263 superalloy by using one-parameter-at-a-time (OPAT) approach. Surface roughness and average cutting rate were showing the increasing trend with the spark energy and peak current and reverse trend with the spark frequency. Surface integrity aspects of Nimonic C-263 such as surface topography, surface morphology, recast layer thickness, elemental composition, and phase analysis have been also considered in this study. Scanning electron microscope (SEM) micrograph of the machined surface shows the presence of micro-voids, discharge craters, micro-globules, and droplets of molten material. A recast layer of minimum thickness, with less transfer of foreign atoms (Mo, C, and O) from dielectric fluid and molybdenum wire, has been formed at lower spark energy compared to higher spark energy. The various compounds of Ni, Fe, Al, and Ti such as Fe1.2Ni0.8, Fe1.5Ni0.5, Co0.06Fe0.94, and Alo.29Ni0.27Ti0.44 were formed on the machined surface identified through analysis of XRD peaks.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available