4.7 Article

Novel Bioactive Peptides from Meretrix meretrix Protect Caenorhabditis elegans against Free Radical-Induced Oxidative Stress through the Stress Response Factor DAF-16/FOXO

Journal

MARINE DRUGS
Volume 16, Issue 11, Pages -

Publisher

MDPI
DOI: 10.3390/md16110444

Keywords

antioxidant peptides; oxidative stress; reactive oxygen species; transcription factor DAF-16; FOXO; Meretrix meretrix; Caenorhabditis elegans

Funding

  1. Special Funds of the Central Finance to Support the Development of Local Universities and Colleges, Guangdong Province Department of Education [2015KGJHZ022]
  2. Guangdong Provincial Medical Science Foundation [A2016232]
  3. Special Funds Climbing Program of Guangdong Province Students for Scientific and Technological Innovation [138981]

Ask authors/readers for more resources

The hard clam Meretrix meretrix, which has been traditionally used as medicine and seafood, was used in this study to isolate antioxidant peptides. First, a peptide-rich extract was tested for its protective effect against paraquat-induced oxidative stress using the nematode model Caenorhabditis elegans. Then, three novel antioxidant peptides; MmP4 (LSDRLEETGGASS), MmP11 (KEGCREPETEKGHR) and MmP19 (IVTNWDDMEK), were identified and were found to increase the resistance of nematodes against paraquat. Circular dichroism spectroscopy revealed that MmP4 was predominantly in beta-sheet conformation, while MmP11 and MmP19 were primarily in random coil conformation. Using transgenic nematode models, the peptides were shown to promote nuclear translocation of the DAF-16/FOXO transcription factor, a pivotal regulator of stress response and lifespan, and induce the expression of superoxide dismutase 3 (SOD-3), an antioxidant enzyme. Analysis of DAF-16 target genes by real-time PCR reveals that sod-3 was up-regulated by MmP4, MmP11 and MmP19 while ctl-1 and ctl-2 were also up-regulated by MmP4. Further examination of daf-16 using RNA interference suggests that the peptide-increased resistance of C. elegans to oxidative stress was DAF-16 dependent. Taken together, these data demonstrate the antioxidant activity of M. meretrix peptides, which are associated with activation of the stress response factor DAF-16 and regulation of the antioxidant enzyme genes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available