4.8 Article

Mixed 1T-2H Phase MoS2/Reduced Graphene Oxide as Active Electrode for Enhanced Supercapacitive Performance

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 8, Issue 48, Pages 32842-32852

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.6b11290

Keywords

reduced graphene oxide aerogels; molybdenum oxide; L-cysteine; molybdenum sulfide; 1T/2H phases; supercapacitor

Ask authors/readers for more resources

A hybrid aerogel, composed of MoS2 sheets of IT (distorted octahedral) and 2H (trigonal prismatic) phases, finely mixed with few layers of reduced graphene oxide (rGO) and obtained by means of a facile environment friendly hydrothermal cosynthesis, is proposed as electrode material for super capacitors. By electrochemical characterizations in three- and two-electrode configurations and symmetric planar devices, unique results have been obtained, with specific capacitance values up to 416 F g(-1) and a highly stable capacitance behavior over 50000 charge-discharge cycles. The in-depth morphological and structural characterizations through field emission scanning electron microscopy, Raman, X-ray photoelectron spectroscopy, X-ray diffraction, Brunauer-Emmett-Teller, and transmission electron microscopy analysis provides the proofs of the unique assembly of such 3D structured matrix. The unpacked MoS2 structure exhibits an excellent distribution of IT and 2H phase sheets that are highly exposed to interaction with the electrolyte, and so available for surface/near-surface redox reactions, notwithstanding the quite low overall content of MoS2 embedded in the reduced graphene oxide (rGO) matrix. A comparison with other more conventional hybrid rGO-MoX2 electrochemically active materials, synthesized in the same conditions, is provided to support the outstanding behavior of the cosynthesized rGO-MoS2.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available