4.7 Article

Elastic-Plastic Transformation of Polyelectrolyte Complex Hydrogels from Chitosan and Sodium Hyaluronate

Journal

MACROMOLECULES
Volume 51, Issue 21, Pages 8887-8898

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.macromol.8b01658

Keywords

-

Funding

  1. Japan Society for the Promotion of Science (JSPS) [17H06144]
  2. China Scholarship Council [201406060092]
  3. Fundamental Research Funds for the Central Universities [2018ZD14]
  4. National Science Foundation [EFMA-1830957, DMR-I121107]
  5. National Institutes of Health [P01-HL108808, R01-HL136961, 5UH3HL123645]
  6. Cystic Fibrosis Foundation
  7. NATIONAL HEART, LUNG, AND BLOOD INSTITUTE [R01HL136961, UH3HL123645, P01HL108808] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Hydrogels formed by polyelectrolyte complexation (PEC) of oppositely charged biopolymers, free of any chemical additives, are promising biomaterials. In this work, the mechanical behavior of hydrogels consisting of positively charged chitosan and negatively charged sodium hyaluronate (HA) at balanced charge composition is investigated. These hydrogels exhibit strong tensile strain and strain rate dependence. They are elastic-like, independent of the strain rate at small strain, but exhibit plastic-like behavior above the yield point by showing a monotonous decrease of the stress. The cyclic tensile test demonstrates that these hydrogels exhibit small and quickly recoverable hysteresis in the elastic-like region but large and partially recoverable hysteresis above the yield point. The stress relaxation experiment shows a plateau in the reduced stress followed by an abrupt fracture, and the time to failure decreases exponentially with increasing applied step strain. Such elastic-to-plastic-like transformation of the biopolymer PEC gels is quite different from the behaviors of PEC hydrogels formed by oppositely charged vinyl-type synthetic polyelectrolytes due to the difference in flexibility, charge density, and ionic bond strength of these polymers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available