4.8 Article

Heteroepitaxy of Fe3O4/Muscovite: A New Perspective for Flexible Spintronics

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 8, Issue 49, Pages 33794-33801

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.6b11610

Keywords

heteroepitaxy; spintronics; magnetite; muscovite; flexible electronics

Funding

  1. Ministry of Science and Technology [MOST 103-2119-M-009-003-MY3, MOST 104-2628-E-009-005-MY2]

Ask authors/readers for more resources

Spintronics has captured a lot of attention since it was proposed. It has been triggering numerous research groups to make their efforts on pursuing spin-related electronic devices. Recently, flexible and wearable devices are in a high demand due to their outstanding potential in practical applications. In order to introduce spintronics into the realm of flexible devices, we demonstrate that it is feasible to grow epitaxial Fe3O4 film, a promising candidate for realizing spintronic devices based on tunneling magnetoresistance, on flexible muscovite. In this study, the heteroepitaxy of Fe3O4/muscovite is characterized by X-ray diffraction, high-resolution transmission electron microscopy, and Raman spectroscopy. The chemical composition and magnetic feature are investigated by a combination of X-ray photoelectron spectroscopy and X-ray magnetic circular dichroism. The electrical and magnetic properties are examined to show the preservation of the primitive properties of Fe3O4. Furthermore, various bending tests are performed to show the tunability of functionalities and to confirm that the heterostructures retain the physical properties under repeated cycles. These results illustrate that the Fe3O4/muscovite heterostructure can be a potential candidate for the applications in flexible spintronics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available