4.8 Article

Zwitterionic Phosphorylcholine-TPE Conjugate for pH-Responsive Drug Delivery and AIE Active Imaging

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 8, Issue 33, Pages 21185-21192

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.6b06071

Keywords

theranostics; zwitterionic polymers; pH-responsive; aggregation induced emission; drug delivery; bioimaging

Funding

  1. Key Science Technology Innovation Team of Zhejiang Province [2013TD02]
  2. National Natural Science Foundation of China [51303154, 51573160, 21574114]
  3. Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry [[2015]311]

Ask authors/readers for more resources

Polymeric micelles have emerged as a promising nanoplatform for cancer theranostics. Herein, we developed doxorubicin (DOX) encapsulated pH-responsive polymeric micelles for combined aggregation induced emission (ME) imaging and chemotherapy. The novel zwitterionic copolymer poly(2-methacryloyloxyethylphosphorylcholine-co-2-(4-formylphenoxy)ethyl methacrylate) (poly(MPC-co-FPEMA)) was synthesized via RAFT polymerization and further converted to PMPC-hyd-TPE after conjugation of tetraphenylethene (TPE, a typical AIE chromophore) via acid-cleavable hydrazone bonds. The AIE activatable copolymer PMPC-hyd-TPE could self-assemble into spherical PC-hyd-TPE micelles, and DOX could be loaded through hydrophobic interactions. The zwitterionic micelles exhibited excellent physiological stability and low protein adsorption due to the stealthy phosphorylcholine (PC) shell. In addition, the cleavage of hydrophobic TPE molecules under acidic conditions could induce swelling of micelles, which was verified by size changes with time at pH 5.0. The in vitro DOX release profile also exhibited accelerated release rate with pH value decreasing from 7.4 to 5.0. Fluorescent microscopy and flow cytometry studies further demonstrated fast internalization and accumulation of drug loaded PC-hyd-TPE-DOX micelles in HepG2 cells, resulting in considerable time/dose-dependent cytotoxicity. Meanwhile, high-quality ME imaging of PC-hyd-TPE micelles was confirmed in HepG2 cells. Notably, ex vivo imaging study exhibited efficient accumulation and drug release of PC-hyd-TPE-DOX micelles in the tumor tissue. Consequently, the multifunctional micelles with combined nonfouling surface, ME active imaging, and pH-responsive drug delivery showed great potential as novel nanoplatforms for a new generation of cancer theranostics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available