4.7 Article

Two-Photon Polymerization as a Tool for Studying 3D Printed Topography-Induced Stem Cell Fate

Journal

MACROMOLECULAR BIOSCIENCE
Volume 19, Issue 2, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/mabi.201800370

Keywords

3D printing; differentiation; induced pluripotent stem cells; substrate topography; two-photon polymerization

Funding

  1. National Institutes of Health [1 R01 024605-01, 1 DP2 OD007483-01, 5P30CA086862]
  2. Lyle and Sharon Bighley Chair of Pharmaceutical Sciences
  3. University of Iowa Graduate College
  4. Roy J. Carver Charitable Trust [18-5045]
  5. NIH Shared Instrumentation Grant [1 S10 RR022498-01]

Ask authors/readers for more resources

Geometric topographies are known to influence cellular differentiation toward specific phenotypes, but to date the range of features and type of substrates that can be easily fabricated to study these interactions is somewhat limited. In this study, an emerging technology, two-photon polymerization, is used to print topological patterns with varying feature-size and thereby study their effect on cellular differentiation. This technique offers rapid manufacturing of topographical surfaces with good feature resolution for shapes smaller than 3 mu m. Human-induced pluripotent stem cells, when attached to these substrates or a non-patterned control for 1 week, express an array of genetic markers that suggest their differentiation toward a heterogeneous population of multipotent progenitors from all three germ layers. Compared to the topographically smooth control, small features (1.6 mu m) encourage differentiation toward ectoderm while large features (8 mu m) inhibit self-renewal. This study demonstrates the potential of using two-photon polymerization to study and control stem cell fate as a function of substrate interactions. The ability to tailor and strategically design biomaterials in this way can enable more precise and efficient generation or maintenance of desired phenotypes in vitro and in vivo.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available