4.5 Article

Light energy accumulation by cholesteric liquid crystal layer at oblique incidence

Journal

LIQUID CRYSTALS
Volume 46, Issue 7, Pages 1079-1090

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/02678292.2018.1556821

Keywords

Cholesteric liquid crystals; photonic band gap; light localisation; total internal reflection

Ask authors/readers for more resources

Oblique propagation of light through a planar layer of a cholesteric liquid crystal (CLC) is solved by Ambartsumian's modified layer addition method. Two cases are considered, namely, the case when dielectric boundaries have a minimum influence on light transmission and the case when the CLC layer is in a vacuum. It is shown that in the first case a total internal reflection can happen for the fast eigen-mode at large incidence angles. New important features of light reflection (transmission) spectra, photonic density of states and accumulated energy density in the CLC layer are studied. The light localisation peculiarities in the CLC layer at oblique incidence is investigated too. It is shown that the light localisation for both the long-wavelength edge mode and the short-wavelength edge mode changes differently when the incidence angle changes. The obtained results can be used in the design of low-threshold lasers, in solar cell systems, in chiral photonics, in systems strongly absorbing light at certain wavelengths and when designing systems with absorption suppression created on the base of absorbing media, etc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available