4.7 Review

Matrikines for therapeutic and biomedical applications

Journal

LIFE SCIENCES
Volume 214, Issue -, Pages 22-33

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.lfs.2018.10.056

Keywords

Matrikines; ECM Peptides; Therapeutics; Biomedical; Tissue engineering

Funding

  1. Indian council of medical research

Ask authors/readers for more resources

Matrikines, peptides originating from the fragmentation of extracellular matrix proteins are identified to play important role in both health and disease. They possess biological activities, much different from their parent protein. Identification of such bioactive cryptic regions in the extracellular matrix proteins has attracted the researchers all over the world in the recent decade. These bioactive peptides could find use in preparation of biomaterials and tissue engineering applications. Matrikines identified in major extracellular matrix (ECM) proteins like collagen, elastin, fibronectin, and laminin are being extensively studied for use in tissue engineering and regenerative medicine. They are identified to modulate cellular activity like cell growth, proliferation, migration and may induce apoptosis. RGD, a well-known peptide identified in fibronectin with cell adhesive property is being investigated in designing biomaterials. Collagen hexapeptide GFOGER was found to promote cell adhesion and differentiation. Laminin also possesses regions with strong cell adhesion property. Recently, cell-penetrating peptides from elastin are used as a targeted delivery system for therapeutic drugs. The continued search for cryptic sequences in the extracellular matrix proteins along with advanced peptide coupling chemistries would lead to biomaterials with improved surface properties. This review article outlines the peptides derived from extracellular matrix and some of the possible applications of these peptides in therapeutics and tissue engineering applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available