4.8 Article

Preparation of an Arg-Glu-Asp-Val Peptide Density Gradient on Hyaluronic Acid-Coated Poly(ε-caprolactone) Film and Its Influence on the Selective Adhesion and Directional Migration of Endothelial Cells

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 8, Issue 43, Pages 29280-29288

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.6b09375

Keywords

PCL film; REDV peptide; gradient materials; endothelial cells; smooth muscle cells; selective cell migration

Funding

  1. Natural Science Foundation of China [21434006, 21374097]
  2. Key Science Technology Innovation Team of Zhejiang Province [2013TD02]
  3. Zhejiang Provincial Natural Science Foundation of China [LR16E030001]
  4. Fundamental Research Funds for the Central Universities [2016QNA4030]

Ask authors/readers for more resources

Selective adhesion and migration of endothelial cells (ECs) over smooth muscle cells (SMCs) is very important in the rapid endothelialization of blood-contacting implants to prevent vascular restenosis. In this study, a uniform cell-resistant layer of methacrylate-functionalized hyaluronic acid (HA) was first immobilized on a poly(epsilon-caprolactone) (PCL) film via polydopamine coupling. Then, a density gradient of thiol-functionalized Arg-Glu-Asp-Val (REDV) peptide was prepared on the HA layer via thiol-ene click chemistry and the continuous injection method. The REDV gradient selectively enhanced EC adhesion and preferential directional migration toward the region of higher REDV density, reaching 86% directionality in the middle of the gradient. The migration rate of ECs was also significantly enhanced twofold compared with that on tissue culture polystyrene (TCPS). In contrast, the gradient significantly weakened the adhesion of SMCs to 25% of that on TCPS but had no obvious impact on the migration rate and directionality. Successful modulation of the selective adhesion and directional migration of ECs over SMCs on biodegradable polymers serves as an important step toward practical applications for guided tissue regeneration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available