4.6 Article

Femtosecond Direct Laser-Induced Assembly of Monolayer of Gold Nanostructures with Tunable Surface Plasmon Resonance and High Performance Localized Surface Plasmon Resonance and Surface Enhanced Raman Scattering Sensing

Journal

LANGMUIR
Volume 34, Issue 51, Pages 15763-15772

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.8b00413

Keywords

-

Funding

  1. Conseil regional Champagne-Ardenne (Projet Nanomateriaux 3D)
  2. NanoMat by Ministere de l'enseignement superieur et de la recherche

Ask authors/readers for more resources

We show femtosecond direct laser-induced assembly of gold nanostructures with plasmon resonance band variable as a function of laser irradiation in a wide range of visible wavelengths. A system of 2-photon lithography is used to achieve site-selectively controlled dewetting of a thin gold film into nanostructures in which size and shape are highly dependent on the laser power. Simultaneous measurements of localized surface plasmon resonance (LSPR) and surface enhanced Raman scattering (SERS) in the presence of various concentrations of trans-1,2-bis(4-pyridyl) ethylene (BPE) as target molecule are performed in order to highlight the relationship between structural dimensions, plasmonic effect, and detection activity. The resulting gold NPs exhibit high sensitivity as both LSPR and SERS sensors and allow the detection of picomolar concentrations of BPE with a SERS enhancement factor (SEF) of 1.33 X 10(9) and a linear detection range between 10(-3) and 10(-12) M.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available