4.6 Article

Hyperspectral Imaging Microscopy of Acetaminophen Adsorbed on Multiwalled Carbon Nanotubes

Journal

LANGMUIR
Volume 34, Issue 44, Pages 13210-13218

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.8b02939

Keywords

-

Funding

  1. Fundamental Research Funds for the Central Universities [310421111]
  2. National Natural Science Foundation of China [51778055]
  3. US National Science Foundation [1756444]
  4. Div Of Chem, Bioeng, Env, & Transp Sys
  5. Directorate For Engineering [1756444] Funding Source: National Science Foundation

Ask authors/readers for more resources

In this study, enhanced dark-field hyperspectral imaging (ED-HSI) was employed to directly observe acetaminophen (AAP), a model pharmaceutical and personal care product (PPCP), adsorbed on multiwalled carbon nanotubes with large diameters (L-MWCNT) and small diameters (S-MWCNT) under equilibrium conditions. The ED-HSI results revealed that (1) AAP molecules primarily adsorbed onto the external surfaces, rather than the internal surfaces of L- and S-MWCNT aggregates, (2) or on sidewall of the dispersed tubes, but not at their end caps. Besides, ED HSI images showed that the surface coverage ratio of AAP/S-MWCNT is smaller than that of AAP/L-MWCNT (1.1 vs 3.4), indicating that there are more available adsorption sites on S-MWCNT than L-MWCNT when the adsorption reached equilibrium. This finding was consistent with the adsorption capacities of S-MWCNT and L-MWCNT (252.7 vs 54.6 mg g(-1)). Direct visualization of sorption sites for PPCP molecules provides new insights into the heterogeneous structures and surface properties of MWCNT and helps elucidate the adsorption mechanisms that are fundamental to the design of functional adsorbents for PPCP contaminants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available