4.8 Article

Direct Uniaxial Alignment of a Donor-Acceptor Semiconducting Polymer Using Single-Step Solution Shearing

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 8, Issue 14, Pages 9285-9296

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.6b01607

Keywords

organic semiconductors; polymer semiconductors; polymer alignment; solution processing; solution shearing; donor-acceptor copolymers; field-effect transistors

Funding

  1. Kodak Graduate Fellowship
  2. National Science Foundation [DMR-1303178]
  3. National Science Foundation Materials Genome Program [1434799]
  4. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-76SF00515]
  5. Swedish Knut and Alice Wallenberg Foundation
  6. BASF
  7. Direct For Mathematical & Physical Scien
  8. Division Of Materials Research [1434799] Funding Source: National Science Foundation

Ask authors/readers for more resources

The alignment of organic semiconductors (OSCs) in the active layers of electronic devices can confer desirable properties, such as enhanced charge transport properties due to better ordering, charge transport anisotropy for reduced device cross-talk, and polarized light emission or absorption. The solution-based deposition of highly aligned small molecule OSCs has been widely demonstrated, but the alignment of polymeric OSCs in thin films deposited directly from solution has typically required surface templating or complex pre- or postdeposition processing. Therefore, single-step solution processing and the charge transport enhancement afforded by alignment continue to be attractive. We report here the use of solution shearing to tune the degree of alignment in poly(diketopyrrolopyrrole-terthiophene) thin films by controlling the coating speed. A maximum dichroic ratio of similar to 7 was achieved on unpatterned substrates without any additional pre- or postdeposition processing. The degree of polymer alignment was found to be a competition between the shear alignment of polymer chains in solution and the complex thin film drying process. Contrary to previous reports, no charge transport anisotropy was observed because of the small crystallite size relative to the channel length, a meshlike morphology, and the likelihood of increased grain boundaries in the direction transverse to coating. In fact, the lack of aligned morphological structures, coupled with observed anisotropy in X-ray diffraction data, suggests the alignment of polymer molecules in both the crystalline and the amorphous regions of the films. The shear speed at which maximum dichroism is achieved can be controlled by altering deposition parameters such as temperature and substrate treatment. Modest changes in molecular weight showed negligible effects on alignment, while longer polymer alkyl side chains were found to reduce the degree of alignment. This work demonstrates that solution shearing can be used to tune polymer alignment in a one-step deposition process not requiring substrate patterning or any postdeposition treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available