4.8 Article

Hollow Porous VOx/C Nanoscrolls as High-Performance Anodes for Lithium-Ion Batteries

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 8, Issue 39, Pages 25954-25961

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.6b07439

Keywords

VOx/C nanoscrolls; hollow; low-crystalline; lithium-ion batteries; anodes

Ask authors/readers for more resources

Novel hollow porous VOx/C nanoscrolls are synthesized by an annealing process with the VOx/octadecylamine (ODA) nanoscrolls as both vanadium and carbon sources. In the preparation, the VOx/ODA nanoscrolls are first achieved by a two-phase solvothermal method using ammonium metavanadat as the precursor. Upon subsequent heating, the intercalated amines between the vanadate layers in the VOx/ODA nanoscrolls decompose into gases, which escape from inside the nanoscrolls and leave sufficient pores in the walls. As the anodes of lithium-ion batteries (LIBs), such hollow porous VOx/C nanoscrolls possess exceedingly high capacity and rate capability (904 mAh g(-1) at 1 A g-1) and long cyclic stability (872 mAh g(-1) after 210 cycles at 1 A g(-1)). The good performance is derived from the unique structural features of the hollow hierarchical porous nanoscrolls with low crystallinity, which could significantly suppress irreversible Li+ trapping as well as improve Li+ diffusion kinetics. This universal method of annealing amine-intercalated oxide could be widely applied to the fabrication of a variety of porous electrode materials for high-performance LIBs and supercapacitors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available