4.8 Article

Parallel Control over Surface Charge and Wettability Using Polyelectrolyte Architecture: Effect on Protein Adsorption and Cell Adhesion

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 8, Issue 44, Pages 30552-30563

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.6b09481

Keywords

layer-by-layer assembly; polyelectrolyte multilayer; surface charge; surface wettability; protein adsorption; cell adhesion

Funding

  1. Agency for Science, Technology, and Research (A*STAR)
  2. A*STAR Graduate Academy

Ask authors/readers for more resources

Surface charge and wettability, the two prominent physical factors governing protein adsorption and cell adhesion, have been extensively investigated in the literature. However, a comparison between these driving forces in terms of their independent and cooperative effects in affecting adhesion is rarely explored on a systematic and quantitative level. Herein, we formulate a protocol that features two-dimensional control over both surface charge and wettability with limited cross-parameter influence. This strategy is implemented by controlling both the polyion charge density in the layer-by-layer (LbL) assembly process and the polyion side-chain chemical structures. The 2D property matrix spans surface isoelectric points ranging from 5 to 9 and water contact angles from 35 to 70 degrees, with other interferential factors (e.g., roughness) eliminated. The interplay between these two surface variables influences protein (bovine serum albumin, lysozyme) adsorption and 3T3 fibroblast cell adhesion. For proteins, we observe the presence of thresholds for surface wettability and electrostatic driving forces necessary to affect adhesion. Beyond these thresholds, the individual effects of electrostatic forces and wettability are observed. For fibroblast, both surface charge and wettability have an effect on its adhesion. The combined effects of positive charge and hydrophilicity lead to the highest cell adhesion, whereas negative charge and hydrophobicity lead to the lowest cell adhesion. Our design strategy can potentially form the basis for studying the distinct behaviors of electrostatic force or wettability driven interfacial phenomena and serve as a reference in future studies assessing protein adsorption and cell adhesion to surfaces with known charge and wettability within the property range studied here.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available