4.5 Review

Chloroplast RNA polymerases: Role in chloroplast biogenesis

Journal

BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS
Volume 1847, Issue 9, Pages 761-769

Publisher

ELSEVIER
DOI: 10.1016/j.bbabio.2015.02.004

Keywords

Chloroplast RNA polymerase; Chloroplast transcription; Chloroplast RNA; Chloroplast biogenesis; Chloroplast development; Photosynthesis

Funding

  1. Deutsche Forschungsgemeinschaft [SFB 429]

Ask authors/readers for more resources

Plastid genes are transcribed by two types of RNA polymerase in angiosperms: the bacterial type plastid-encoded RNA polymerase (PEP) and one (RPOTp in monocots) or two (RPOTp and RPOTmp in dicots) nuclear-encoded RNA polymerase(s) (NEP). PEP is a bacterial-type multisubunit enzyme composed of core subunits (coded for by the plastid rpoA, rpoB, rpoC1 and rpoC2 genes) and additional protein factors (sigma factors and polymerase associated protein, PAPs) encoded in the nuclear genome. Sigma factors are required by PEP for promoter recognition. Six different sigma factors are used by PEP in Arabidopsis plastids. NEP activity is represented by phage-type RNA polymerases. Only one NEP subunit has been identified, which bears the catalytic activity. NEP and PEP use different promoters. Many plastid genes have both PEP and NEP promoters. PEP dominates in the transcription of photosynthesis genes. Intriguingly, rpoB belongs to the few genes transcribed exclusively by NEP. Both NEP and PEP are active in non-green plastids and in chloroplasts at all stages of development. The transcriptional activity of NEP and PEP is affected by endogenous and exogenous factors. This article is part of a Special Issue entitled: Chloroplast Biogenesis. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available