4.8 Article

Sea Cucumber-Inspired Autolytic Hydrogels Exhibiting Tunable High Mechanical Performances, Repairability, and Reusability

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 8, Issue 14, Pages 8956-8966

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.6b00912

Keywords

hydrogel; autolysis; hydrogen-bonding; calcium ion; high strength

Funding

  1. National Natural Science Foundation of China [51173129, 21274105]
  2. National Natural Science Funds for Distinguished Young Scholar [51325305]
  3. Tianjin Municipal Natural Science Foundation [13ZCZDSY00900, 15JCZD JC38000]

Ask authors/readers for more resources

Inspired by stimuli-responsive remarkable changes in consistency (hardening, softening, autolysis) of sea cucumbers, we synthesized a supramolecular polymer(SP) hydrogel directly by photoinitiated aqueous polymerization of N-acryloyl 2-glycine monomer bearing one amide and one carboxyl group on the side chain. The SP hydrogels doped with Ca2+ demonstrated excellent mechanical properties high tensile strength (similar to 1.3 MPa), large stretchability (up to 2300%), high compressive strength (similar to 10.8 MPa), and good toughness (similar to 1000 J m(-2)) due to cooperative hydrogen bonding interactions from amide and carboxyl together with Ca2+ cross-linking. Responding to the change in pH and Ca2+ concentration, the hydrogels could modulate their network stability and mechanical properties: at pH3.0 and higher Ca2+ content, the hydrogel formed low swelling network which was stiff and stable; in alkaline or neutral buffer with lower content of or without Ca2+, the hydrogel formed a highly swollen transient network, which was soft and eventually autolyzed. The reversible multiple noncovalent bonds enabled the hydrogels to achieve thermoplasticity, self-healability, and reusability. Notably, distinct formulations of hydrogels could be welded together under heating to form a gradient hydrogel. In vitro cytotoxicity assay and subcutaneous implantation indicated that the SP hydrogels were biocompatible and autolytic in vivo. The SP hydrogels may find applications as temporary biodevices for intestinal drug delivery or for injectable filling in assisting suturing small vessels.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available