4.8 Article

Electrophoretic Deposition of Dexamethasone-Loaded Mesoporous Silica Nanoparticles onto Poly(L-Lactic Acid)/Poly(ε-Caprolactone) Composite Scaffold for Bone Tissue Engineering

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 8, Issue 6, Pages 4137-4148

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.5b11879

Keywords

electrophoretic deposition; mesoporous silica nanoparticles (MSNs); dexamethasone; poly(L-lactic acid)/poly(epsilon-caprolactone) scaffold; bone tissue engineering

Funding

  1. National Natural Science Foundation of China [31271028, 31570984]
  2. Shanghai Municipal Education Commission [13ZZ051]
  3. Science and Technology Commission of Shanghai Municipality [15540723400]
  4. Open Foundation of State Key Laboratory for Modification of Chemical Fibers and Polymer Materials [LK1416]
  5. Chinese Universities Scientific Fund [CUSF-DH-D-2013008]

Ask authors/readers for more resources

The incorporation of microcarriers as drug delivery vehicles into polymeric scaffold for bone regeneration has aroused increasing interest. In this study, the aminated mesoporous silica nanoparticles (MSNs-NH2) were prepared and used as microcarriers for dexamethasone (DEX) loading. Poly(L-lactic acid)/poly(epsilon-caprolactone) (PLLA/PCL) nanofibrous scaffold was fabricated via thermally induced phase separation (TIPS) and served as template, onto which the drug-loaded MSNs-NH2 nanoparticles were deposited by electrophoretic deposition (EPD). The physicochemical and release properties of the prepared scaffolds (DEX@MSNs-NH2/PLLA/PCL) were examined, and their osteogenic activities were also evaluated through in vitro and in-vivo studies. The release of DEX from the scaffolds revealed an initial rapid release followed by a slower and sustained one. The in vitro results indicated that the DEX@MSNs-NH2/PLLA/PCL scaffold exhibited good bio-compatibility to rat bone marrow-derived mesenchymal stem cells (BMSCs). Also, BMSCs cultured on the DEX@MSNs-NH2/PLLA/PCL scaffold exhibited a higher degree of osteogenic differentiation than those cultured on PLLA/PCL and MSNs-NH2/PLLA/PCL alkaline phosphatase (ALP) activity, mineralized matrix formation, and osteocalcin (OCN) expression. Furthermore, the in vivo results in a calvarial defect model of Sprague-Dawley (SD) rats demonstrated that the DEX@MSNs-NH2/PLLA/PCL scaffold could significantly promote calvarial defect healing compared with the PLLA/PCL scaffold. Thus, the EPD technique provides a convenient way to incorporate osteogenic agents-containing microcarriers to polymer scaffold, and thus, prepared composite scaffold could be a potential candidate for bone tissue engineering application due to its capacity for delivery of osteogenic agents.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available