4.8 Article

Improved Performance of Polymer Solar Cells by Thermal Evaporation of AgAl Alloy Nanostructures into the Hole-Transport Layer

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 8, Issue 39, Pages 26098-26104

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.6b10173

Keywords

polymer solar cells; AgAl alloy; local surface plasmonic resonance; metal nanoparticles; stability

Funding

  1. National Natural Science Foundation of China [61275038, 11274119]

Ask authors/readers for more resources

The performance characteristics of polymer solar cells (PSCs) incorporated with AgAl and Ag nanostructures and MoO3 spacer layers were investigated. The power conversion efficiency (PCE) of PSCs is sensitive to the nominal thicknesses of the AgAl nanostructures and the MoO3 spacer layer. The PCE of a PSC with a 3-nm-thick layer of AgAl nanostructures and a 1-nm-thick MoO3 isolation layer reached 9.79%, which is higher than the PCE (8.55%) of the reference PSC without metal nanostructures. Compared to PSCs with Ag nanostructures, PSCs with AgAl nanostructures showed better stability and still retained 60% of their initial PCE values after aging for 120 days in air without encapsulation. The enhanced stability of the PSCs is attributed to the formation of AlOx, which can inhibit the diffusion of Ag atoms into the neighboring layer. The localized surface plasmonic resonance (LSPR) effect of AgAl nanostructures was retained by inserting an only 1-nm-thick MoO3 spacer layer between the metal nanostructures and the metal electrode. Our work has demonstrated that using AgAl alloy instead of Ag as plasmonic nanostructures is a better strategy for improving the performance of PSCs, especially in terms of the stability of the cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available