4.8 Article

Manganese Oxide Based Catalytic Micromotors: Effect of Polymorphism on Motion

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 8, Issue 47, Pages 32624-32629

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.6b12024

Keywords

micromotors; nanomotors; polymorphs; manganese oxide; template; fabrication

Funding

  1. Faculty of Science and Forestry, University of Eastern Finland

Ask authors/readers for more resources

Manganese oxide (MnO2) has recently emerged as a promising alternate material for the fabrication of self-propelled micromotors. Platinum (Pt) has been traditionally used as a catalytic material for this purpose. However, the high cost associated with Pt restricts its widespread use toward practical applications where large amounts of material are required. MnO2 exists in different crystalline forms (polymorphs), which govern its catalytic behavior. In spite of this, the recent reports on MnO2 based micromotors have seldom reported on the polymorphic form involved. In the present work, we synthesized six different types of MnO2 based micromotors, which represent different geometrical designs (i.e., spherical, rod-like, and tube-like microparticles) and polymorphs, and characterized their motion behavior in different chemical environments. Out of all micromotors tested, the hollow spherical MnO2 microparticles reached the maximum velocity of similar to 1600 mu m s(-1), which represents the fastest MnO2 based catalytic micromotor reported until date. The findings of this study will have a profound impact on the design and application of the next-generation synthetic micro- and nanomotors based on MnO2 as a low-cost and environment friendly

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available