4.8 Article

Designed Functional Systems for High-Performance Lithium-Ion Batteries Anode: From Solid to Hollow, and to Core-Shell NiCo2O4 Nanoparticles Encapsulated in Ultrathin Carbon Nanosheets

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 8, Issue 7, Pages 4745-4753

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.6b00813

Keywords

binary metal oxides; core-shell; encapsulation; ultrathin carbon; energy storage

Funding

  1. Thousand Young Talents Program of the Chinese Central Government [0220002102003]
  2. National Natural Science Foundation of China (NSFC) [21373280, 21403019]
  3. Beijing National Laboratory for Molecular Sciences (BNLMS)
  4. Hundred Talents Program at Chongqing University [0903005203205]

Ask authors/readers for more resources

Binary metal oxides have been considered as ideal and promising anode materials, which can ameliorate and enhance the electrochemical performances of the single metal oxides, such as electronic conductivity, reversible capacity, and structural stability. In this research, we report a rational method to synthesize some novel sandwich-like NiCo2O4@C nanosheets arrays for the first time. The nanostructures exhibit the unique features of solid, hollow, and even core shell NiCo2O4 nanoparticles encapsulated inside and a graphitized carbon layers coating outside. Compared to the previous reports, these composites demonstrate more excellent electrochemical performances, including superior rate capability and excellent cycling capacity. Therefore, the final conclusion would be given that these multifarious sandwich-like NiCo2O4@C composites could be highly qualified candidates for lithium-ion battery anodes in some special field, in which good capability and high capacity are urgently required.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available