4.8 Article

Ionic Compatibilization of Cellulose Nanocrystals with Quaternary Ammonium Salt and Their Melt Extrusion with Polypropylene

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 8, Issue 13, Pages 8755-8764

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.6b01650

Keywords

cellulose nanocrystal; quaternary ammonium salt; polymer nanocomposite; melt extrusion; polypropylene

Funding

  1. LabEx Tec 21 (Investissements d'Avenir) [ANR-11-LABX-0030]
  2. PolyNat Carnot Institut (Investissements d'Avenir) [ANR-11-CARN-030-01]

Ask authors/readers for more resources

On account to their high mechanical properties along with high reinforcing capacity, cellulose nanocrystals (CNCs) could be the ultimate choice for polymer nanocomposites as filler. Recently, different strategies have been investigated for the melt extrusion of CNC-based polymer nanocomposites because it is a solvent-free process and because this technique is more viable for commercial industrialization. However, most thermoplastic polymers are processed at high temperatures, and sulfuric acid preparation of CNC limits the processing because of surface sulfate groups degradation. In this study we profitably used these negatively charged groups, and quaternary ammonium salt was ionically adsorbed on CNC by a simple aqueous method. Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction were used to characterize adsorbed CNC, and changes in polarity were investigated by contact angle measurements. Modified CNC was extruded with polypropylene at 190 degrees C, and the ensuing composites were characterized in terms of mechanical (by dynamic mechanical analysis and tensile tests), thermal (by differential scanning calorimetry), and morphological (scanning electron microscopy) properties. The melt rheology of PP-based nanocomposites was also reported.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available