4.8 Article

Design Paradigm Utilizing Reversible Diels-Alder Reactions to Enhance the Mechanical Properties of 3D Printed Materials

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 8, Issue 26, Pages 16961-16966

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.6b05118

Keywords

3D printing; dynamic covalent chemistry; remendable polymers; additive manufacturing; Diels-Alder

Funding

  1. University of Texas, Dallas
  2. State of Texas
  3. DARPA
  4. UT Dallas Center for Engineering Innovation

Ask authors/readers for more resources

A design paradigm is demonstrated that enables new functional 3D printed materials made by fused filament fabrication (FFF) utilizing a thermally reversible dynamic covalent Diels-Alder reaction to dramatically improve both strength and toughness via self-healing mechanisms. To achieve this, we used as a mending agent a partially cross-linked terpolymer consisting of furan-maleimide Diels-Alder (fmDA) adducts that exhibit reversibility at temperatures typically used for FFF printing. When this mending agent is blended with commercially available polylactic acid (PLA) and printed, the resulting materials demonstrate an increase in the interfilament adhesion strength along the z-axis of up to 130%, with ultimate tensile strength increasing from 10 MPa in neat PLA to 24 MPa in fmDA-enhanced PLA. Toughness in the z-axis aligned prints increases by up to 460% from 0.05 MJ/m(3) for unmodified PLA to 0.28 MJ/m(3) for the remendable PLA. Importantly, it is demonstrated that a thermally reversible cross-linking paradigm based on the furan-maleimide Diels-Alder (fmDA) reaction can be more broadly applied to engineer property enhancements and remending abilities to a host of other 3D printable materials with superior mechanical properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available