4.6 Article

The foot is more than a spring: human foot muscles perform work to adapt to the energetic requirements of locomotion

Journal

JOURNAL OF THE ROYAL SOCIETY INTERFACE
Volume 16, Issue 150, Pages -

Publisher

ROYAL SOC
DOI: 10.1098/rsif.2018.0680

Keywords

intrinsic foot muscles; longitudinal arch; foot biomechanics; human locomotion; electromyography

Funding

  1. National Health and Medical Research Council Peter Doherty Fellowship [APP1111909]

Ask authors/readers for more resources

The foot has been considered both as an elastic mechanism that increases the efficiency of locomotion by recycling energy, as well as an energy sink that helps stabilize movement by dissipating energy through contact with the ground. We measured the activity of two intrinsic foot muscles, flexor digitorum brevis (FDB) and abductor hallucis (AH), as well as the mechanical work performed by the foot as a whole and at a modelled plantar muscletendon unit (MTU) to test whether these passive mechanics are actively controlled during stepping. We found that the underlying passive visco-elasticity of the foot is modulated by the muscles of the foot, facilitating both dissipation and generation of energy depending on the mechanical requirements at the centre of mass (COM). Compared to level ground stepping, the foot dissipated and generated an additional -0.2 J kg(-1) and 0.10 J kg(-1) (both p < 0.001) when stepping down and up a 26 cmstep respectively, corresponding to 21% and 10% of the additional net work performed by the leg on the COM. Of this compensation at the foot, the plantar MTU performed 30% and 89% of the work for step-downs and step-ups, respectively. This work occurred early in stance and late in stance for stepping down respectively, when the activation levels of FDB and AH were increased between 69 and 410% compared to level steps (all p, 0.001). These findings suggest that the energetic function of the foot is actively modulated by the intrinsic foot muscles and may play a significant role in movements requiring large changes in net energy such as stepping on stairs or inclines, accelerating, decelerating and jumping.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available