4.7 Article

Bile Acid G Protein-Coupled Membrane Receptor TGR5 Modulates Aquaporin 2-Mediated Water Homeostasis

Journal

JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY
Volume 29, Issue 11, Pages 2658-2670

Publisher

AMER SOC NEPHROLOGY
DOI: 10.1681/ASN.2018030271

Keywords

TGR5; AQP2; cAMP; lithium

Funding

  1. National Natural Science Foundation of China [81670646, 81570635]
  2. Natural Science Foundation of Guangdong Province [2016A020215034, 2014A030313168]
  3. Natural Science Foundation of Guangzhou [201707010036]
  4. International Cooperation Program Fund of Sun Yat-Sen University [02300-31145400]
  5. National Research Foundation of Korea - Ministry of Science, Information and Communication Technology and Future Planning, Korea [2016R1A2B4009365, 2017R1D1A3B03032262]
  6. Deutsche Forschungsgemeinschaft [Sonderforschungsbereich 974]
  7. National Institutes of Health [R01AG049493, R01DK098336, R01DK116567]
  8. National Research Foundation of Korea [2017R1D1A3B03032262, 2016R1A2B4009365] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

Background The bile acid-activated receptors, including the membrane G protein-coupled receptor TGR5 and nuclear farnesoid X receptor (FXR), have roles in kidney diseases. In this study, we investigated the role of TGR5 in renal water handling and the underlying molecular mechanisms. Methods We used tubule suspensions of inner medullary collecting duct (IMCD) cells from rat kidneys to investigate the effect of TGR5 signaling on aquaporin-2 (AQP2) expression, and examined the in vivo effects of TGR5 in mice with lithium-induced nephrogenic diabetes insipidus (NDI) and Tgr5 knockout (Tgr5(-/-)) mice. Results Activation of TGR5 by lithocholic acid (LCA), an endogenous TGR5 ligand, or INT-777, a synthetic TGR5-specific agonist, induced AQP2 expression and intracellular trafficking in rat IMCD cells via a cAMP-protein kinase A signaling pathway. In mice with NDI, dietary supplementation with LCA markedly decreased urine output and increased urine osmolality, which was associated with significantly upregulated AQP2 expression in the kidney inner medulla. Supplementation with endogenous FXR agonist had no effect. In primary IMCD suspensions from lithium-treated rats, treatment with INT-767 (FXR and TGR5 dual agonist) or INT-777, but not INT-747 (FXR agonist), increased AQP2 expression. Tgr5(-/-) mice exhibited an attenuated ability to concentrate urine in response to dehydration, which was associated with decreased AQP2 expression in the kidney innermedulla. In lithium-treated Tgr5(-/-) mice, LCA treatment failed to prevent reduction of AQP2 expression. Conclusions TGR5 stimulation increases renal AQP2 expression and improves impaired urinary concentration in lithium-induced NDI. TGR5 is thus involved in regulating water metabolism in the kidney.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available