4.5 Article

Sputter-Coated Metal Screening for Small Molecule Analysis and High-Spatial Resolution Imaging in Laser Desorption Ionization Mass Spectrometry

Journal

Publisher

SPRINGER
DOI: 10.1007/s13361-018-2081-0

Keywords

Sputter coating; Laser desorption ionization; Mass spectrometry imaging; Nanoparticles; Noble metals; Small molecule imaging

Funding

  1. United States Department of Agriculture-National Institute of Food and Agriculture (USDA-NIFA)

Ask authors/readers for more resources

Nanoparticles are efficient matrices in laser desorption/ionization (LDI) mass spectrometry (MS), especially for the profiling or imaging of small molecules. Recently, solvent-free physical vapor desorption (PVD), or sputter coating, was adopted as a homogenous method to rapidly apply metal nanoparticles (NPs) in situ to samples prior to LDI MS or MS imaging analysis. However, there has been no systematic study comparing different metal targets for the analysis of a variety of small molecule metabolites. Here, we present a screening and optimization of various sputter-coated metals, including Ag, Au, Cu, Pt, Ni, and Ti, for LDI analysis of small molecules in both positive and negative ion modes. Optimized sputter coating is then applied to high-spatial resolution LDI mass spectrometry imaging (MSI) of maize root and seed cross-sections. Noble metals, Ag, Au, and Pt, are found to be much more efficient than transition metals and organic matrices for most small metabolites. Sputter-coated metals are efficient for neutral lipids, such as triacylglycerols and diacylglycerols, but are very inefficient for most phospholipids. [GRAPHICS] .

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available