4.8 Article

Controlling the Color of Lead-Free Red Overglaze Enamels and a Process for Preparing High-Quality Red Paints

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 8, Issue 17, Pages 10918-10928

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.6b01549

Keywords

red overglaze enamels; lead-free frit; hematite; particle size; core/shell composite particles

Funding

  1. Special Funds for Education and Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan
  2. Kazuchika Okura Memorial Foundation

Ask authors/readers for more resources

Akae porcelain, an artistic Japanese traditional overglaze ceramic typically known for Kakiemon-style ware, has fascinated porcelain lovers around the world for over 400 years because of the graceful red color displayed by akae that matches so well with white porcelain bodies. In this work, we clarified the factors that control the color of akae and those that are conventionally controlled by artisans based on empirical experience. Inspired by a recent particle-design method, we also developed a practical facile process to prepare red paints that yields high-quality akae. Various akae samples were prepared from a combination of lead-free alkali borosilicate glass frits with different particle sizes and hematite powders with differing dispersibilities. Polarized light microscopy, scanning electron microscopy, and transmission electron microscopy analyses indicate that considering only the dispersibility of hematite powders is not sufficient, but the frit-particle size must be controlled to obtain high-quality akae with a high reflectance value for >= 580 nm visible light. In addition, we developed a process for preparing high-quality red paints that uses a large-particle frit powder and a strongly aggregated-hematite powder, both of which are easily obtainable. The red paint composed of frit, hematite, and the solvent is mixed until the paint is drying. By adding more solvent and repeating this process three times, we obtained high-quality akae with a higher reflectance value than for the akae prepared from a frit with submicron-sized particles and weakly aggregated-hematite powder. On the basis of transmission electron microscopic observations, we consider the red paint to consist of a core/shell-like composite structure of frit and hematite, forming a three-dimensional network in the akae glass layer. The good dispersibility of these particles leads to high-quality akae.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available