4.8 Article

Mechanical Properties of Solution-Processed Small-Molecule Semiconductor Films

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 8, Issue 18, Pages 11649-11657

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.6b02603

Keywords

organic semiconductors; small molecules; additives; stretchable electronics; mechanical properties; organic solar cells

Funding

  1. Air Force Office of Scientific Research (AFOSR) Young Investigator Program [FA9550-13-1-0156]
  2. National Science Foundation Graduate Research Fellowship Program [DGE-1144086]
  3. Kaplan Dissertation Year Fellowship
  4. Office of Naval Research [N000141410076]
  5. Camille Dreyfus Teacher-Scholar Awards Program

Ask authors/readers for more resources

Advantages of semiconducting small molecules as opposed to semiconducting polymers include synthetic simplicity, monodispersity, low cost, and ease of purification. One purported disadvantage of small-molecule films is reduced mechanical robustness. This paper measures the tensile modulus and crack-onset strain for pure films of the high-performance solution-processable small-molecule donors 7,7'[4,4-bis(2-ethylhexyl)-4H-silolo [3,2-b:4,5-b']dithiophene-2,6-diyl]bis[6-fluoro-4-(5'-hexyl-[2,2'-bithiophen]-5-yl)benzo[c] [1,2,5] thia diazole] (DTS-(FBTTh2)2), 2,5-di(2-ethylhexyl)-3,6-bis(5 ''-n-hexyl-[2,2',5',2 '']terthiophen-5-yl)-pyrrolo[3,4-c]pyrrole-1,4-dione (SMDPPEH), and 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene), the acceptor 5,5'-(2,1,3-benzothiadiazole-4,7-diyldi-2,1-ethenediyl)bis [2-hexyl-1H-isoindole-1,3(2H)-dione] (HPI-BT), blends of DTS(FBTTh2)2 and SMDPPEH with [6,6]-phenyl C-71 butyric acid methyl ester (PC71BM) and with HPI-BT, and bulk heterojunction films processed with the additives 1,8-diiodooctane (DIO) and polystyrene (PS). The most deformable films of solution-processed organic semiconductors are found to exhibit tensile moduli and crack-onset strains comparable to those measured for conjugated polymers. For example, the tensile modulus of as-cast DTS(FBTTh2)(2) is 0.68 GPa (i.e., comparable to poly(3-hexylthiophene) (P3HT), the common polymer), while it exhibits no cracks when stretched on an elastomeric substrate to strains of 14%. While this high degree of stretchability is lost upon the addition of PC71BM (4.2 GPa, 1.42%), it can be partially recovered using processing additives. Tensile modulus and crack-onset strain are highly correlated, which is typical of van der Waals solids. Increased surface roughness was correlated to increased modulus and brittleness within films of similar composition. Decreased stiffness for soluble molecular semiconductors can be rationalized by the presence of alkyl side chains, which decrease the van der Waals attraction between molecules in the crystalline grains. These measurements and observations could have important consequences for the stability of devices based on molecular semiconductors, especially those destined for stretchable or ultraflexible applications, or those demanding mechanical robustness during roll-to-roll fabrication or use in the outdoor environment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available