4.8 Article

Inducing High Ionic Conductivity in the Lithium Superionic Argyrodites Li6+x P(1-x)Ge(x)S(5)l for All -Solid-State Batteries

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 140, Issue 47, Pages 16330-16339

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jacs.8b10282

Keywords

-

Funding

  1. Deutsche Forschungsgemeinschaft (DFG) [ZE 1010/4-1]
  2. Alexander von Humboldt Foundation

Ask authors/readers for more resources

Solid-state batteries with inorganic solid electrolytes are currently being discussed as a more reliable and safer future alternative to the current lithium-ion battery technology. To compete with state-of-the-art lithium-ion batteries, solid electrolytes with higher ionic conductivities are needed, especially if thick electrode configurations are to be used. In the search for optimized ionic conductors, the lithium argyrodites have attracted a lot of interest. Here, we systematically explore the influence of aliovalent substitution in Li6+xP1-xGexS5I using a combination of X-ray and neutron diffraction, as well as impedance spectroscopy and nuclear magnetic resonance. With increasing Ge content, an anion site disorder is induced and the activation barrier for ionic motion drops significantly, leading to the fastest lithium argyrodite so far with 5.4 +/- 0.8 mS cm(-1) in a cold-pressed state and 18.4 +/- 2.7 mS cm(-1) upon sintering. These high ionic conductivities allow for successful implementation within a thick-electrode solid-state capacity fade over 150 cycles. The observed changes in the activation barrier and changing site approach toward designing better performing solid electrolytes. battery that shows negligible disorder provide an additional approach toward designing better performing solid electrolytes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available