4.8 Article

Conjunction of Conducting Polymer Nanostructures with Macroporous Structured Graphene Thin Films for High-Performance Flexible Supercapacitors

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 8, Issue 18, Pages 11711-11719

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.6b01879

Keywords

macroporous structured graphene thin films; graphene papers; conducting polymers; electropolymerization; flexible supercapacitors

Funding

  1. Hundred Talents Program of the Chinese Academy of Sciences
  2. National Natural Science Foundation of China [21274158, 91333114]

Ask authors/readers for more resources

Fabrication of hybridized structures is an effective strategy to promote the performances of graphene-based composites for energy,storage/conversion applications. In this work, macroporous structured graphene thin films (MGTFs) are fabricated on various substrates including flexible graphene papers (GPs) through an ice-crystal-induced phase separation process. The MGTFs prepared on GPs (MGTF@GPs) are recognized with remarkable features such as interconnected macroporous configuration, sufficient exfoliation of the conductive RGO sheets, and good mechanical flexibility. As such, the flexible MGTF@GPs are demonstrated as a versatile conductive platform for depositing conducting polymers (CPs), e.g., polyaniline (PAn), polypyrrole, and polythiophene, through in situ electropolymerization. The contents of the CPs in the composite films are readily controlled by varying the electropolymerization time. Notably, electrodeposition of PAn leads to the formation of nanostructures of PAn nanofibers on the walls of the macroporous structured RGO framework (PAn@MGTF@GPs): thereafter, the PAn@MGTF@GPs display a unique structural feature that combine the nanostructures of PAn nanofibers and the macroporous structures of RGO sheets. Being used as binder-free electrodes for flexible supercapacitors, the PAn@MGTF@GPs exhibit excellent electrochemical performance, in particular a high areal specific capacity (538 mF cm(-2)), high cycling stability, and remarkable capacitive stability to, deformation, due to the unique electrode structures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available