4.6 Article

Solar vanadium redox-flow battery powered by thin-film silicon photovoltaics for efficient photoelectrochemical energy storage

Journal

JOURNAL OF PHYSICS D-APPLIED PHYSICS
Volume 52, Issue 4, Pages -

Publisher

IOP Publishing Ltd
DOI: 10.1088/1361-6463/aaeab9

Keywords

vanadium redox-flow battery; silicon; concentrated photovoltaics; energy storage; energy conversion

Funding

  1. Generalitat de Catalunya [2017SGR1246]
  2. European Regional Development Funds (ERDF, FEDER)
  3. MINECO project [ENE2016-80788-C5-5-R, RESOL ENE2017-85087]
  4. European Union's Horizon 2020
  5. Agency for Business Competitiveness of the Government of Catalonia [712939]
  6. MINECO through the Juan de la Cierva fellowship [FJCI-2016-29147]
  7. KIC InnoEnergy Masters programme
  8. Deutsche Forschungsgemeinschaft (DFG) [SPP 1613]

Ask authors/readers for more resources

Solar-powered vanadium redox-flow batteries (VRFB) have emerged as an attractive method for large-scale and efficient energy storage and conversion. However, due to the stringent charging voltage requirements of vanadium-based systems (1.4-1.7 V), common photobatteries, applying standard photovoltaics with nonoptimized photovoltages, cannot be completely charged bias-free, i.e. by only using bias-free solar energy, or if they can be, only at unpractical low current densities of just a few mA cm(-2). In response to this critical challenge, the present study aimed to design and test a compact device combining a high-photovoltage silicon multijunction solar cell with an all-vanadium continuous-flow battery. In particular, we applied a monolithic triple junction solar cell, which can provide photovoltage of up to 2.2 V. Additionally, we have introduced the concept of increased illumination intensity for the solar VRFB. As a first demonstration, a complete bias-free solar charging at 25 mA cm(-2) (300 mW cm(-2) illumination) is reported. Moreover, we investigated the influence of the operation parameters of the redox-flow battery itself: the membrane type and the vanadium concentration in the electrolyte (i.e. storage capacity). The presented results provide evidence that the low-cost thin-film silicon based solar VRFB can be considered as an outstanding alternative for practical energy storage and conversion usage. A maximum bias-free solar conversion efficiency of 12.3% was achieved during charging, combined with promising and competitive energy efficiencies for the complete charge-discharge process that can guarantee an overall solar-to-electricity conversion efficiency of >10%.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available