4.8 Article

Molecular Emission near Metal Interfaces: The Polaritonic Regime

Journal

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
Volume 9, Issue 22, Pages 6511-6516

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpclett.8b02980

Keywords

-

Funding

  1. NSF CAREER [CHE 1654732]
  2. Center for Excitonics, an Energy Frontier Research Center - U.S. Department of Energy [DE-SC0001088]
  3. Ministry of Education and Science of the Russian Federation [3.2166.2017/4.6]
  4. U.S. Department of Energy [DE-SC0017760]

Ask authors/readers for more resources

The strong coupling of a dense layer of molecular excitons with surface-plasmon modes in a metal gives rise to polaritons (hybrid light matter states) called plexcitons. Surface plasmons cannot directly emit into (or be excited by) free-space photons due to the fact that energy and momentum conservation cannot be simultaneously satisfied in photoluminescence. Most plexcitons are also formally nonemissive, even though they can radiate via molecules upon localization due to disorder and decoherence. However, a fraction of them are bright even in the presence of such deleterious processes. In this Letter, we theoretically discuss the superradiant emission properties of these bright plexcitons, which belong to the upper energy branch and reveal huge photoluminescence enhancements compared to bare excitons, due to near-divergences in the density of photonic modes available to them. Our study generalizes the well-known problem of molecular emission next to a metal interface to the polaritonic regime.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available