4.6 Article

Electronic Structure and Optical Properties of Designed Photo-Efficient Indoline-Based Dye-Sensitizers with D-A-π-A Framework

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 123, Issue 6, Pages 3309-3320

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.8b10708

Keywords

-

Funding

  1. Department of Energy [DE-SC0018322]
  2. NSF EPSCoR [OIA-1757220]
  3. Extreme Science and Engineering Discovery Environment (XSEDE) by National Science Foundation [OCI-1053575]
  4. XSEDE award [DMR110088, DMR110013P]
  5. U.S. Department of Energy (DOE) [DE-SC0018322] Funding Source: U.S. Department of Energy (DOE)

Ask authors/readers for more resources

Seven D-A-pi-A-based indoline (IND) dyes that were designed via quantitative-structure-property relationship modeling have been comprehensively investigated using computational approaches to evaluate their prospect of application in future dye-sensitized solar cells (DSSCs). An array of optoelectronic properties of the isolated dye and dyes adsorbed on a TiO2 cluster that simulates the semiconductor were explored by density functional theory (DFT) and time-dependent DFT methods. Light absorption spectra, vertical dipole moment, shift of the conduction band of semiconductor, excited state lifetime, driving force of electron injection, photostability of the excited state, and exciton binding energy were computed. Our study showed that the presence of an internal acceptor such as pyrido[3,4-b]pyrazine (pyrazine) would influence greater the open circuit voltage (V-OC), compared to the benzothiadiazole moiety. Considering the balance between the V-OC and J(SC) (short circuit current) along with the all calculated characteristics, the IND3, INDS, and IND10 are the most suited among the designed dyes to be used as potential candidates for the photo-efficient DSSCs. The present study provides the results of rational molecular design followed by exploration of photophysical properties to be used as a valuable reference for the synthesis of photo-efficient dyes for DSSCs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available