4.6 Article

Mechanism behind the Unusually High Conductivities of High Concentrated Sodium Ion Glyme-Based Electrolytes

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 122, Issue 44, Pages 25237-25246

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.8b06991

Keywords

-

Funding

  1. LSU Department of Chemistry
  2. Louisiana Optical Network Initiative

Ask authors/readers for more resources

New highly concentrated electrolytes based on ether solvents were developed for sodium electrochemical cells. The investigated electrolytes use sodium triflate and glycol diether oligomers of different length to form the electrolyte. These electrolytes present conductivities that increase as a function of concentration even when the electrolyte is composed of a majority of ion pairs and aggregates. Correlation analysis between the electrolyte speciation and conductivity suggests the presence of two distinct mechanisms of charge transport, namely a traditional vehicular mechanism based on the diffusion of free ions and a hopping mechanism involving the making and breaking of ion-pairs and/or aggregates. The former mechanism represents the charge transport of glyme with 3 or 4 units, while the latter is observed in electrolytes composed of short chains, i.e., 1 or 2 units. The proposed mechanism of transport is corroborated via molecular dynamics simulations. In addition, our experiments demonstrate that the high concentration of the sodium salt not only increases the overall conductivity of the electrolyte but also does not affect its electrochemical window.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available